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An approximate solution is obtained for the problem of weak transient 

heat convection within fluid trapped between two concentric spherical 

walls. which are maintained at constant temperature. The assumption is 

that at the instant of starting, the fluid is at rest, and is at a uni- 

form temperature everywhere but differing from that of the walls. The 

temperature and velocity of the fluid are found to the zero and first 

approximations, expressed as expansions of these terms in powers of the 

Rayleigh number. Finally, in these approximations, the effect of con- 

vection on the rate of cooling of the fluid is reviewed. 

1. Statement of Problem. We will deal with the problem of transient 

heat convection in fluid confined within the space bounded by two con- 

centric spheres of radius R1 and R2 (RI < R2), maintained at constant 

temperature T1, if, at the initial instant the fluid was at rest and was 

at constant temperature T2 f T1. 

We will make use of the well known equations of free convection [l I. 

L?T’ 
at + (v VT’) = xA’7”, &VV = 0 (i.ij 

where v is the velocity of the fluid, T’ and p’, temperature and pressure 

reckoned from the values which they would have had under conditions of 

mechanical and thermal equilibrium at some mean temperature, p is the 

mean density of the liquid, v, 6, x, respectively, are the coefficients 

of kinematic viscosity, thermal expansion and thermal conductivity of 

the fluid, and g is the acceleration due to gravity. 

We eliminate p’ by applying operation rot to (1.1); thus 
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We introduce the dimensionless variables, 

1 T’ 
u=-v, r 

x - 5= Tz-Tl ’ rl=-, 
1 

t+t (1.3) 

where 1 = R2 - RI. Using this notation for the nondimensional time and 

coordinates in what follows, we arrive at the following dimensionless 

equations of the problem: 

a 
z rot u + rot rot rot u - -!_ rot [u rot u] = IV&V,, [VTkl 

NFr 
tw 

~7 = W?$ + N,, $ > div u = 0, (‘t’p, -f) - (Prandt’l No) 

N,,E _ g@(Tz---l)P 
V2 

- (Grashof No) k=-!% 
g 

(1.5) 

If we reckon the value T of the fluid temperature from T1, then T’ = 
T- T1 and r = (T- T1)/(T2 - T1). It follows that the temperature T at 
the boundaries of t!je field is Zero at any Divan inatnnt nf timo whilst O-.".. _-.I"I,*I _^ '_..._( ....-....,Y 

at the initial instant it is unity: 

r(r, t)= 0, T (E, 0) = 1 f1.Q 

The velocity of the fluid u at the boundary is taken to be zero at al. 

times,whilst at the initial instant it is zero over the whole fluid as 

stated for the problem at the outset: 

u(F, t) = u (r, 0) = 0 (1.7) 

Assuming the convection to be weak the required values can be evalu- 

ated from (1.4) as a power series in Grashof numbers 12 1. As the Gras- 

hof number only enters the equations of the problem in the combination 

called the Rayleigh number, the quantities we are looking for can be 
expanded in a series of Rayleigh number: 

u = 11, (XrriVcr)+ u2 (NprN&Z+..., : =*,Cl) + Tit. (.V,,,aVv,,) + fz (XFr‘YGr)~ + . . . ($.S) 

If we limit ourselves to the zero and first Rayleigh Number approxi- 

mat ions, we obtain the following equations of the problem; 

azlj = M,, 2; ) ATi = N,, 2 + (UiDT”) (1.9) 

~rotul+rotrotrotul=[Orok], div u1 = 0 (1.10) 

2. Zero Approximation. It is evident that the zero approximation, 

equation (1.9), describes the process of cooling of the heated fluid by 
molecular heat conduction(to be explicit T2 is taken > T1). 

It follows from symmetry that 5 = rD (r, t), where r is the dimension- 

less distance from the centre of the sphere. 

Using spherical coordinates the first equation (1.9) is as follows 
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In order to be consistent with the postulated initial and boundary 
conditions, we require that the solution of (2.1) satisfies the following 

conditions: 

Solving by the method of Fourier. we get 

no = i 
A,exp(- k%” ) -t sinnn(r -rl) 

( 
A,== &- ra co9 nx)’ (2.2) 

Pr > 
?%==l 

3. Firat Approximation. 1. We will first find the velocity of the 
fluid. To do this we have to solve equations (1.10) taking (2.2) into 
account with the corresponding initial and boundary conditions. 

Note that the fluid motion is symmetrical with respect to the vertical 
diameter of the sphere. We will introduce the dimensionless stream func- 
tion $ = $!f fr, 6. t). For the components of the velocity ml in the 
spherical system, we will have: 

(3.1) 

We will look for a stream function $ in the form 

J, = f (r, t) sin2 8 (3.2) 

Now putting (3.2) into (3.11, and the result of this into (1. lo), we 
obtain 

ii’ 2i 

( 

^“.‘. 
01 

) 

,, ,_< .-%Z” 
0 (LJ 

p yr-- gx - Zt\f 
_z_+._$~~_i!Xj-r~ (3.3) 

From conditions (1.7) we get the following conditions: 

f (rs, 1) = f P2, 4 = 0, f’ h 0 = f’ (r2, 2) = 0, f(r, 0) = f’(r, 0) = 0 (3.4) 

(both here, and in what follows, the prime denotes differentiation with 
respect to r). We will look for a solution to the nonhomogeneous linear 
differential equation (3.5) in the following form: 

..L-_- 
wnere 

f(r, t) = 5 R, (r)Sk 01 
k-1 

(3.5) 

are eigen functions of the homogeneous problem corresponding to the don- 
homogeneous problem (3.3). (3.4). whilst Sk(t) are, so far, undetermined 
functions. 

In equation (3.6) Xl(k = 1.2.. ) are roots of the equation 
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3 (r12 + rs2) cos h + (ra3 - r13) ‘x sin A - 3 
sin h 
- = 6rlr, 

x (3.7) 

and the constants ck have the values 

(3.8) 

c,(g) = kg 
k 

f-h,, (a& J-l,* O&b) - J-a,* ch,) iIf, bJ 

f&o = - Ck@fQ - .d- ak2 ~cpJ,,, (akd + C,(W_l,r (wl 

(J is the Bessel function). We may note that the system of functions 
Rk(r) (k = 1,2,.. ) is complete (see Ref. [ 3 1 1. 

It can be seen on checking that the functions Rk(r) and (2R,/r* - R,‘? 
for k f II are mutually orthogonal and therefore if we multiply both sides 

Of (3.5) by (2Rk/r2 - Rk) and integrate with respect to r within the 
limits r1 and r2 we obtain 

To find the integral on the left-hand side of (3.9) we multiply both 
sides Of (3.3) by Rk and integrate with respect to r from r1 to r2 [ 4 1 . 
Integrating by parts we shift the differentiating operation from the 
function f t0 Rk, and, after straightforward rearrangement we obtain the 
equation (&?n) 

Now we solve the equation (3.19) for Gk(‘). taking the initial COn- 
ditions (3.4) into account. The result of the calculation is 

t 

G, tt) = - exP (- h,‘t) s 
Hk (1) exp (akBt) dt (3.11) 

0 
This expression for the integral is put into (3.9) and th’e second 

equation there is solved for Sk(t). Introducing the Value Of Sk(t) SO 
._ -. 

obtained into (3.5), we then arrive at a solution of equation (3.3) which 
formally satisfies all the conditions (3.4) in the form: 

f (r, t) = C A’, (4 R, W = - 5 R, (r) 
ak2 exp (-- akat) * 

qg (0 
. Hk (t) exp (Irk%) dt (3.12) 

h-=1 f 
0 
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Putting (3.12) into (3.2), the stream function can also be expressed 
as a series. 

We find the velocity components to the first approximation in Rayleigh 
numbers from the formulas 

(3.13) 

2. We will now turn our attention to finding the fluid temperature. 
The second equation in (1.9), which in the first approximation yields the 
convective portion of the temperature distribution, can be written in 
spherical coordinates [(bearing in mind (3.1) and (3.2) 1 in the form 

The initial and the boundary conditions of the problem (see section l), 

also taking into account the conditions under which the zero approxima- 
tion temperature equation (see section 2) was solved. give 

71 (r1, 8, t> = *I (r2, 6, q = 0, T1 (f, 6, 0) = 0 (3.15) 

We will look for a solution of equation (3.14) in the form 

71 =(p(r, t)cos6 (3.16) 

Now putting (3.16) into (3.14) we arrive at the equation which the 
function gS must satisfy 

(3.17) 

From (3.15), we have the following conditions for the function d: 

cp (rr, t) = ‘P (r2, t) = 0, ‘p (PI 0 = 0) (3.18) 

Using the method of separation of variables we find the solution of 
the problem (3. Y?) and (3.18). 

Here, 

Ds (r) = (eir)-“’ Ir_*,, (‘irl) J*/s (Eir) - Js,, (E*rl) J_*/, (EirfI (3.20) 

are efgen functions of the homogeneous problem corresponding to the non- 
homogeneous problem (3.17)_(3.18). and c i are roots of the equation, 

Therefore in the first approximation we get for the dimensionless 
temperature 
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where r o is obtained from formula (2.21, and r 1 from formulas (3.16) and 
(3.1). 

4. Heat Flow. Cooling Time. 1. We will now find the quantity of heat 
Q flowing through the boundary over a finite time interval t (for 

instance, over the time t from the start of the fluid cooling process). 

For this, we make use of the formula 

where x is the coefficient of heat conductivity of the fluid. ($1 is the 

bounding spherical surface of the film, n is the outward normal to this 

surface. In the approximation we are dealing with, this fluid temperature 

distribution is given by the formula 

T = TX + Pa - T,f (70 + ~~~~~~~1) (4.2) 

where T 0 and I 1 are determined from equations (2.2), (3.16) and (3.1). 

If we put (4.2) into (4.11 and integrate we find; 

Q=-+a--~) ; “n2[exp (- $+-i] 
TX==% 

(4.3) 

Equation (4.3) shows that the heat lost by the fluid in time increases 

asymptotically to the value Cx/x)Y(TZ - T,). where V is the volume of 

fluid. 

2. In the study of transient heat transfer problems, the cooling time 

or “equalization” time is an important quantity. 

If we study the solution we find that in the case of our first approxi 

mation, convection does not have much effect on the heat transfer of the 

fluid. i.e. molecular heat conduction is the main controlling factor in 

the heat transfer process. 

Indeed, as may be seen from the solution of the problem, the tempera- 

ture distribution in the fluid is determined by the sum of products of 

functions of the coordinates and exponential functions of time. Obviously 

the rapidity of temperature change is mainly determined by that term in 

the sum which has the least absolute value of the coefficient of t. The 

reciprocal of this coefficient can be used to express the “equalization” 

time. It appears that the temperature “equalization” time is given by 

t = 12/xrr2 for both cases, i.e., for purely molecular thermal conduction, 

and for the case when thermal convection affects the temperature distri- 
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bution. 

We should be able to obtain a graphic picture of the heat transfer 
process if, in any plane containing the axis of symmetry of the flow, we 
drew out streamlines and isothermal8 for various instants of time. How- 
ever this was not done because the formulas obtained are so unwieldy. 

The author thanks I. G. Shapshnikov for making available the subject 
of the work, and S.I. Melnik and V.S. Sorokin for some valuable criticisms. 
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